

One walk I recently developed is called -Eards Walk." This excursion effectively helps students vistatiize our planet's immense size and numerous structares without the usual scale and ratio distorlions found in most textbooks, It alsorallows students to compare their body's height to a scated down Earth.

The Earth can be scaled toany convenient mato you wish to walk. I prefer a stroll of 1 km , but if time ot sptee is limited, a 100 m walk works just fine and can be kone on a school's football field. The equation to determine the scaled thickness of each of the Earth's internal byers is a simple proportion based on a planetary sadias of approximately 6400 km :
$\frac{\text { Thickness oldyer in } \mathrm{km}}{6400 \mathrm{~km}}=\frac{x \mathrm{~m}}{1000 \mathrm{~m}}$ or $\frac{x \mathrm{~m}}{100 \mathrm{~m}}$
The Earth Walk requires a picce of chalk, a $1-k m$ (or 100-m) staightaway, a tape measure, and it good inagination. I highly recommend pacing off your distances because this activity is based on ratios and approxima-tions-extreme atcurncy should not be a mator concern. To determine the length of an average pace, have students walk 10 paces, measure the total distance traveled. and divige by 10 .

Before begioning, it might help to set the lollowing scenario:

Inagine the Earth has been reduced in size 6400 dines (or 64,000 times if walking 100 m) and sticed in tralf by an enommous Knife. You and your clasmates somebow survived and hate fonded directly in the conter of one of the exprosed couss sections. By walking onftward from the center, you will be able to see the dardouts layers that comprise tbe Earth's internal strachame.

Now that the situation has been set, you can take Your first steps. Any straight direction you proceed is away from the center of the Eanh and is a linear path out toward the crust. As you walk along this ruclius, have students pace of the scaled distance for each bayer of the Earth's internal structure. (See Figate 1 for the appropriate distances.)

During the walk, it helps to dicseribe the characteristics of eatel laycr. The Eath's inner core is a sphere chat

Toble of scoled distoncos.				
Layer	Distance from surface (approximate upper and lower limits)	Average approximate thickness	Approximate scaled thicknoss for $1 \cdot \mathrm{~km}$ walk	Approximato scaled thickness 100 -m walk
Innor core	6400.5200 km	1200 km	190 m	19 m
Outer core	$5200-2900 \mathrm{~km}$	2300 km	360 m	36 m
Lower mantle	2900.700 km	2200 km	340 m	34 m
Upper mantle (including asthenosphere and lithosphere)	$700-6 \mathrm{~km}$	700 km	109 m	10.9 m
Asthenosphere	225.125 km	100 km	16 m	1.6 m
Lithosphere	125.0 km	$125 \mathrm{~km}$	19.5 m	1.95 m
Crust (outer lithosphere)	35.0 km	35 km	5.5 m	0.55 m
Totals		6400 km	1000 m	100 m

extends about 1200 km from the center of the Earth. Even though the temperature of the inner core is estimated to be as hot as the Sun's surface $\left(8000^{\circ}\right.$ to $100000^{\circ} \mathrm{C}$). enormous pressures keep the core in a solid state. (The surrounding layers of the Earth cause pressures at the core in excess of 3 to 4 million atmospheres.) This solid core is believed to consist primarily of iron and nickel.

The outer core, like the inner core, is also composed primarily of iron and nickel, but unlike the inner core, the outer core is thought to be a shell of liquid metal. The fuid motions of this metallic region are thought to be the origin of the Earth's magnetic field.

The next layer, the mante is approximately 2900 km thick and extends from the top of the inner core to the bottom of the Earth's crust. Composed of hot, dense rock, the mantle constitutes the majority of the Earth's volume. The main components of this rock in order of abundance are silicon, oxygen, iron, and magnesium.

The section closest to the core is the fouer mantle. The interface between the core and the mante is as pronounced as the interface between the Earth's surface and the atmoophere. Rock at this depth is under substantial pressure and is relatively solk- 30 to 100 times the viscosity of the upper mantle.

Above the lower mantle is the upper mantle. The pressure and heat in this zone allows molten rock to slowly flow in what is known as a plastic manner. Convection currents cause molten rock to rise, cool, and
sink in this layer. These currents are believed to be the driving mechanism for plate tectonics. At the top of the upper mante is an important layer known as the asthenospbere, an area of viscous rock that enables the lithospheric plates albove to slide around.

Riding over the top of the asthenosplere is the titbospbere. This layer consists of huge plates that migrate over the surface of the globe. The lower portion of this layer, though solid, is still considered part of the mantle. Firmly joined above this tower portion of plate is the layer we live on, the crust. The crust is the thinnest, brittest, and most buoyant of all the layers. During this portion of your talk, it is helpful to have an apple in your hand. When discussing the ratio of average crustal thickness to the planet'ssize, point out that the crust is actually thinner in comparison than an apple peet is to an apple. At this point, cut the apple for effect.

As you progesss farther outward, you finally reach the surface of the crust. At this point, draw a line on the ground with your chalk. This line represents the crust on your 1:6400 scale Earth. Have each student place one grain of sand on the line and tell them that the sand represents their height.

Arrange students and/or the sealed objects listed in Figure 2 at varions distances above and below the line. such as 5.5 m below to indicate the bottom of the crust. 2.3 mbelow to show humankind's decpest subterrancan probing (a Ruscian research bore hole), 6.9 cm above to

Depth and height of various objects and locations from the Earth's surface.

Objoct or location	Actual height	Height or depth scaled for 1 -km welk	Height of depth scaled for 100 -m wak	Representetive object for 1-k(m) walk	Representative object for $100-\mathrm{m}$ walk
Deepest dril hole (Auscia)	.15 km	-2.3m	-23 cm	\longrightarrow	-
Mariona Trench	.11 km	-1.7m	$-17 \mathrm{~cm}$	-	-
Ooopest mine (South A'rica)	-3.8 km	-0.6m	-6 cm	\longrightarrow	-
YOU	1.77 m	0.3 mm	0.03 mm	small sond grain	dust speck
Tallest bulding Sears Tcaer, Chicago)	443 m	6.9 cm	6.9 mm	small sticik	pine needle
Tralest mountain M. Evosost) 1	8.85 km	1.4 m	14 cm	-	-
Space shurtie's 3verage orbital height	200 km	31 m	3.1 m	small gravel (0.4 cm)	sarnd grain (0.4 mm)
Mocri's distance from Earth	344000 km	60 lom	6 km	-	-

1. The Earth is not a perfect sphere. Because the Earth bulges at the equator, Chimborazo $(6.31 \mathrm{~km})$ could be considered the tollest mountain because its summit is obout 2.2 km forther from the center of the Earth.
reference the Sears Tower, 1.4 m above to demonstrate the loftyheights of Mount Everest, or 31 mabove to show where the space shuttle orbits (see Figure 2 for other size comparisons). This is a great way to illustrate the relative depths and heights of layers and objects with respect to the Earth's thin crust.

OTHER WALKS

A great walk to do when studying our local group of planets is the solar system walk (see "A Stroll through the Solar System," Science Scope, Kenneth M. Uslabar, Oct 93: 41-43). This is a very popular walk that takes an interplanetary journey over several kilometers. Beach balls, marbles, and pin heads can be used as props to compare relative planetary sizes and orbital distances.

The Earth's geologic time scale can also be demonstrated via walking. A relation can be made between the immense time span of the Earth and a school's running track. Eras, epochs, and significant evolutionary events can be pointed out by designating spots along a track's perimeer to represent points in time. Numcrous fun and pedagogically useful walks can be concocted to convey a variety of facts and concepts. Take a step in the right direction and create your own walks of science. $\stackrel{\text { s }}{ }$

[^0]
ACKNOWLEDGMENT

I wowld like to thank The Wrigint Center for allowing me the time and support to write this article. The Wrigbt Center can be accessed via the World Wide Web througl the Tufts University Departmental bome page (http:// library, tufts.edu/www/medonald/tuftsacprog.html).

FOR FURTHER READING

Most Earth science and geotogy textbooks contain a lot of information about the interior of the Earth. However, since discoveries and modifications of theories reloted to tbe Eartb's interior are constantly being updated and problisibed. pertionficals are a better source of current information. Almanacs and record books are also great resources. However, you may find subtle, yet conflicting data in these pub)fications. I found the following articles particularly useful:
Doherty, P. 1994. Journey to the Center of the Earth. 7\%ov Exploratorium Exploring scrics-Undergroumd. Fall 1994.
Green, H.W. II. 1994. Solving the Paradox of Deep Earthquakes. Sclentific American. 27 I(3): 6i.
Larson, R.L. 1995. The Mid-Cretaceous Superplume Episode. Scientiffic American. 272(2): 82.
Wysession, M. 1995. The Inner Workings of the Eath American Scientist. 83(2): 134.

Earth Walk Addendum

For 100 meter scaled Ear

More Facts about Earthly depths and heights:

	Approximate Height or depth (in Km)	$\frac{\text { Scaled to } 100 \mathrm{~m}}{\text { (in m) }}$
Crust - Oceanic	~ 6.5	. 10
Moon's Radius compared to a 100 m earth	1750	27
Height of atmosphere with less than . $\%$ sea level air pressure	50	. 8
Average ocean depth	-3.8	. 06

Circumference related facts for a 100 m radius scaled planet:

	$\underline{\text { Distance (in Km) }}$	$\underline{\text { Scaled to }} \mathbf{1 0 0 \mathrm { m } \text { (in m) }}$
One Kilometer		

Another interesting fact:
The entire surface area of the city and county of San Francisco, ~ 120 sq. km [45 sq. mi.], would be a little larger then the palms of your hands held together.

[^0]: Eric P. Muller is an H. Dudley Wright Fellow at the Wright Center for Innovation in Sclence Education at Tufts University, 4 Colby St, Medford, MA 02155.

